skip to main content


Search for: All records

Creators/Authors contains: "Jones, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In thiazolo[5,4-d]thiazole (TTz)-based crystals, synergistic non-covalent interactions govern photophysical properties. Therefore, by modulating molecular-packing, TTz-based crystals can be tailored to fit optical and photonic applications such as white-light emissive organic phosphors.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  2. Abstract

    In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM‐MSC) cultures. Sorted CD264+hBM‐MSCs from two age‐matched donors have elevated β‐galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264hBM‐MSCs. Counterintuitive to their aging phenotype, CD264+hBM‐MSCs exhibited comparable survival to matched CD264hBM‐MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony‐forming efficiency. These findings have ramifications for the preparation of hBM‐MSC therapies given the prevalence of aging CD264+cells in hBM‐MSC cultures and the popularity of colony‐forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.

     
    more » « less